Graphene-Based Electrochemical Sensors for Heavy Metal Ions Detection: A Comprehensive Review

Muhammad Dilshad(1), Tariq Hussain(2), Shahbaz Ali(3), Muhammad Shakeel Shahzad(4), Muhammad Javed(5), Farhan Nazir Ahmad(6), Asaad Ahmad Zaki(7),


(1) University of Punjab Lahore
(2) Government College University Faisalabad
(3) Khwaja Fareed University of Engineering and Information Technology
(4) Khwaja Fareed University of Engineering and Information Technology
(5) The Superior University
(6) COMSATS University Islamabad
(7) University of Punjab
Corresponding Author

Abstract


The accumulation of heavy metallic ions in the human body causes serious damage. The tracking and removal of these ions is very necessary and that is done via electrochemical sensors because of quick response, high sensitivity, and low but large detection range. In this regard, the surface of the electrode plays a critical role in electrochemical performance. Here, we present a detailed review of work that has been done in the past to modify the surface of electrodes by testing the carbon nanoparticles i.e. graphene or graphene derivatives, and their combination with other nanoparticles. Mixing graphene or graphene oxide with other organic or inorganic materials forms nanocomposites which help to detect various kinds of heavy metal ions such as cadmium, mercury, copper, lead, zinc, etc. in tap water or food items. This review article includes the synthesis methodologies, working mechanisms, advantages, disadvantages, and future prospectus of this field.

Keywords


Electrochemical sensor,;Graphene-based; Heavy metal

References


Ahmed, S., Bibi, S.S., Irshad, M., Asif, M., Khan, M.K., and Kim, J. (2024). Synthesis of long-chain paraffins over bimetallic Na–Fe0. 9Mg0. 1Ox by direct CO2 hydrogenation. Topics in Catalysis, 67, 363-376. 2024.

Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M.F., Agboola, P.O., and Shakir, I. (2020). Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synthetic Metals, 265, 116410.

AL-Gahouari, T., Sayyad, P., Bodkhe, G., Ingle, N., Mahadik, M., Shirsat, S., and Shirsat, M. (2021). Controlling reduction degree of graphene oxide-based electrode for improving the sensing performance toward heavy metal ions. Applied Physics A, 127, 1-16.

Anwar, S., Sharf, B., Usman, M., Panday, D., and Asif, M. (2020). Organic diet as silent pretreatment strategy to boost immune system against SARS-CoV-2. AlQalam Journal of Medical and Applied Sciences, 3(2), 10-25.

Asif, M. (2022). Comparative study on extraction of humic acid from Pakistani coal samples by oxidizing the samples with hydrogen peroxide. ASEAN Journal of Science and Engineering, 2(1), 1-8.

Asif, M., Bibi, S.S., Ahmed, S., Irshad, M., Hussain, M.S., Zeb, H., Khan, M.K., and Kim, J. (2023). Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chemical Engineering Journal, 473, 145381.

Asif, M., Hussain, M.A., Riaz, A., Mujahid, R., Akram, M.S., Haider, B., Kanwal, S., and Zeb, H. (2023). A physical coal cleaning approach for clean energy production from low grade Lakhra coal of Pakistan using diester table. Journal of the Pakistan Institute of Chemical Engineers, 51(2), 1-9.

Asif, M., Saleem, S., Tariq, A., Usman, M., and Haq, R.A.U. (2021). Pollutant emissions from brick kilns and their effects on climate change and agriculture. ASEAN Journal of Science and Engineering, 1(2), 135-140.

Asif, M., Salman, M.U., Anwar, S., Gul, M., and Aslam, R. (2022). Renewable and non‐renewable energy resources of Pakistan and their applicability under the current scenario in Pakistan. OPEC Energy Review, 46(3), 310-339.

Asif, M., Shafiq, M., Imtiaz, F., Ahmed, S., Alazba, A.A., Hussain, H.N., Butt, F.N., Zainab, S.A., Khan, M.K., and Bilal, M. (2024). Photocatalytic degradation of methyl orange from aqueous solution using ZnO by response surface methodology. Topics in Catalysis, 67, 1-9.

Asif, M., Sharf, B., and Anwar, S. (2020). Effect of heavy metals emissions on ecosystem of Pakistan. Indonesian Journal of Social and Environmental Issues (IJSEI), 1(3), 160-173.

Baghayeri, M., Alinezhad, H., Fayazi, M., Tarahomi, M., Ghanei-Motlagh, R., and Maleki, B. (2019). A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb (II) and Cd (II). Electrochimica Acta, 312, 80-88.

Chen, X., and Pei, Y. (2020). Application of graphene-based nanocomposites in electrochemical detection of heavy metal ions. Science of Advanced Materials, 12(3), 435-440.

Cui, L., Wu, J., and Ju, H. (2015). Synthesis of bismuth‐nanoparticle‐enriched nanoporous carbon on graphene for efficient electrochemical analysis of heavy‐metal ions. Chemistry–A European Journal, 21(32), 11525-11530.

Devi, P., Sharma, C., Kumar, P., Kumar, M., Bansod, B.K.S., Nayak, M.K., and Singla, M.L. (2017). Selective electrochemical sensing for arsenite using rGO/Fe3O4 nanocomposites. Journal of Hazardous Materials, 322, 85-94.

Donald, A.N., Asif, M., and Felicien, S. (2022). A review on the centralised municipal sewage and wastewater treatment unit processes. MOJ Ecology & Environmental Sciences, 7(2), 31-38.

Gao, C., Yu, X.Y., Xu, R.X., Liu, J.H., and Huang, X.J. (2012). AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS applied materials & interfaces, 4(9), 4672-4682.

Gao, S., Liu, J., Luo, J., Mamat. X., Sambasivam, S., Li, Y., Hu, X., Wågberg, T., and Hu, G. (2018). Selective voltammetric Cd(II) determination using N,S-codoped porous carbon nanofibers. Microchimica Acta, 185, 282.

Gong, X., Bi, Y., Zhao, Y., Liu, G., and Teoh, W.Y. (2014). Graphene oxide-based electrochemical sensor: A platform for ultrasensitive detection of heavy metal ions. RSC Advances, 4(47), 24653-24657.

Hassan, A.M.M., Asif, M., Al-Mansur, M.A., Uddin, M.R., Alsufyani, S.J., Yasmin, F., and Khandaker, M.U. (2023). Characterization of municipal solid waste for effective utilization as an alternative source for clean energy production. Journal of Radiation Research and Applied Sciences, 16(4), 100683.

Jayaraman, N., Palani, Y., Jonnalagadda, R.R., and Shanmugam, E. (2022). Covalently dual functionalized graphene oxide-based multiplex electrochemical sensor for Hg (II) and Cr (VI) detection. Sensors and Actuators B: Chemical, 367, 132165.

Kareem, K., Rasheed, M., Liaquat, A., Hassan, A.M.M., Javed, M.I., and Asif, M. (2022). Clean energy production from jatropha plant as renewable energy source of biodiesel. ASEAN Journal of Science and Engineering, 2(2), 193-198.

Kaur, R., Rana, S., Singh, R., Kaur, V., and Narula, P. (2019). A Schiff base modified graphene oxide film for anodic stripping voltammetric determination of arsenite. Microchimica Acta, 186, 1-9.

Khan, M.S., Asif, M.I., Asif, M., Khan, M.R., Mustafa, G., and Adeel, M. (2024). Nanomaterials for the catalytic degradation and detection of microplastics: A review. Topics in Catalysis, 66, 1-18.

Khan, M.S., Asif, M.I., Karim, H., Zainab, S.A., Asif, M., Sohail, M., Ali, M., Munawar, J., Nawaz, S., and Haq, H.U. (2024). Electrospun fibers: promising materials for oil water separation. Nanotechnology for Oil-Water Separation, 11, 261-288.

Kim, E.B., Imran, M., Umar, A., Akhtar, M.S., and Ameen, S. (2022). Indandione oligomer@ graphene oxide functionalized nanocomposites for enhanced and selective detection of trace Cr2+ and Cu2+ ions. Advanced Composites and Hybrid Materials, 5, 1582-1594.

Kumar, R., Bhuvana, T., and Sharma, A. (2017). Nickel tungstate–graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC advances, 7(67), 42146-42158.

Lee, S., Oh, J., Kim, D., and Piao, Y. (2016). A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta, 160, 528-536.

Li, L., Liu, D., Shi, A., and You, T. (2018). Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid. Sensors and Actuators B: Chemical, 255(2), 1762-1770.

Lin, X., Lu, Z., Dai, W., Liu, B., Zhang, Y., Li, J., and Ye, J. (2018). Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd (II) and Pb (II). Journal of Electroanalytical Chemistry, 828, 41-49.

Liu, S., Wu, T., Li, F., Zhang, Q., Dong, X., and Niu, L. (2018). Disposable graphene sensor with an internal reference electrode for stripping analysis of heavy metals. Analytical methods, 10(17), 1986-1992.

Lu, L., Zhou, L., Chen, J., Yan, F., Liu, J., Dong, X., Xi, F., and Chen, P. (2018). Nanochannel-confined graphene quantum dots for ultrasensitive electrochemical analysis of complex samples. ACS Nano, 12(12), 12673-12681.

Lu, M., Deng, Y., Luo, Y., Lv, J., Li, T., Xu, J., Chen, S.W., and Wang, J. (2018). Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Analytical chemistry, 91(1), 888-895.

Mishra, R.K., Nawaz, M.H., Hayat, A., Nawaz, M.A.H., Sharma, V., and Marty, J.L. (2017). Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sensors and Actuators B: Chemical, 247, 366-373.

Nguyen, L.D., Doan, T.C.D., Huynh, T.M., Nguyen, V.N.P., Dinh, H.H., Dang, D.M.T., and Dang, C.M. (2021). An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead. Sensors and Actuators B: Chemical, 345, 130443.

Nourbakhsh, A., Rahimnejad, M., Asghary, M., and Younesi, H. (2022). Simultaneous electro-determination of trace copper, lead, and cadmium in tap water by using silver nanoparticles and graphene nanoplates as nanocomposite modified graphite electrode. Microchemical Journal, 175, 107137.

Pan, F., Tong, C., Wang, Z., Han, H., Pan, D., and Zhu, R. (2021). Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchimica Acta, 188, 295.

Pang, J., Fu, H., Kong, W., Jiang, R., Ye, J., Zhao, Z., Hou, J., Sun, K., Zheng, Y., and Chen, L. (2022). Design of NiCo2O4 nanoparticles decorated N, S co-doped reduced graphene oxide composites for electrochemical simultaneous detection of trace multiple heavy metal ions and hydrogen evolution reaction. Chemical Engineering Journal, 433(3), 133854.

Priya, T., Dhanalakshmi, N., Thennarasu, S., Karthikeyan, V., and Thinakaran, N. (2019). Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified L-cysteine nanocomposite. Chemical Physics Letters, 731, 136621.

Punrat, E., Maksuk, C., Chuanuwatanakul, S., Wonsawat, W., and Chailapakul, O. (2016). Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr (VI) using stopped-flow analysis coupled with voltammetric technique. Talanta, 150, 198-205.

Rahman, M.T., Kabir, M.F., Gurung, A., Reza, K.M., Pathak, R., Ghimire, N., Baride, A., Wang, Z., Kumar, M., and Qiao, Q. (2019). Graphene oxide–silver nanowire nanocomposites for enhanced sensing of Hg2+. ACS Applied Nano Materials, 2(8), 4842-4851.

Rehman, A.U., Fayaz, M., Lv, H., Liu, Y., Zhang, J., Wang, Y., Du, L., Wang, R., and Shi, K. (2022). Controllable synthesis of a porous PEI-functionalized Co3O4/rGO nanocomposite as an electrochemical sensor for simultaneous as well as individual detection of heavy metal ions. ACS omega, 7(7), 5870-5882.

Saisree, S., Nair, A.J.S., and Yesodha, S.K. (2023). Graphene quantum dots doped with sulfur and nitrogen as versatile electrochemical sensors for heavy metal ions Cd(II), Pb(II), and Hg(II). ACS Applied Nano Materials, 6(2), 1224-1234.

Shi, L., Li, Y., Rong, X., Wang, Y., and Ding, S. (2017). Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Analytica chimica acta, 968, 21-29.

Si, Y., Liu, J., Chen, Y., Miao, X., Ye, F., Liu, Z., and Li, J. (2018). rGO/AuNPs/tetraphenylporphyrin nanoconjugate-based electrochemical sensor for highly sensitive detection of cadmium ions. Analytical Methods, 10(29), 3631-3636.

Soman, S., Aswathy, P.V., and Kala, R. (2021). Covalently modified graphene quantum dot using a thiourea based imprinted polymer for the selective electrochemical sensing of Hg (II) ions. Journal of Polymer Research, 2021. 28(9): p. 359.

Srivastava, M., Srivastava, A., and Pandey, S.K. (2020). Suitability of graphene monolayer as sensor for carcinogenic heavy metals in water: A DFT investigation. Applied Surface Science, 517, 146021.

Teodoro, K.B.R., Migliorini, F.L., Facure, M.H.M., and Correa, D.S. (2019). Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II). Carbohydrate polymers, 207, 747-754.

Thiruppathi, A.R., Sidhureddy, B., Keeler, W., and Chen, A. (2017). Facile one-pot synthesis of fluorinated graphene oxide for electrochemical sensing of heavy metal ions. Electrochemistry Communications, 76, 42-46.

Tian, B., Kou, Y., Jiang, X., Lu, J., Xue, Y., Wang, M., and Tan, L. (2020). Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and amino-functionalized graphene quantum dots. Microchimica Acta, 187, 1-12.

Vajedi, F., and Dehghani, H. (2019). The characterization of TiO2-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium (II), lead (II) and copper (II). Materials Science and Engineering: B, 243, 189-198.

Wei, P., Zhu, Z., Song, R., Li, Z., and Chen, C. (2019). An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochimica Acta, 317, 93-101.

Wu, W., Jia, M., Wang, Z., Zhang, W., Zhang, Q., Liu, G., Zhang, Z., and Li, P. (2019). Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchimica Acta, 186, 97.

Xu, X., Lv, X., Tan, F., Li, Y., Geng, C., Cui, B., and Fang, Y. (2021). Simultaneous electrochemical detection of multiple heavy-metal ions based on furfural/reduced graphene oxide composites. Journal of The Electrochemical Society, 168(12), 126516.

Xu, Y., Zhang, W., Huang, X., Shi, J., Zou, X., Li, Z., and Cui, X. (2019). Adsorptive stripping voltammetry determination of hexavalent chromium by a pyridine functionalized gold nanoparticles/three-dimensional graphene electrode. Microchemical Journal, 149, 104022.

Xuan, X., Hossain, M.D.F., and Park, J.Y. (2016). Solvothermal-assisted, reduced-graphene-oxide-modified bismuth electrode for an electrochemical heavy-metal-ion sensor. Journal of Nanoscience and Nanotechnology, 16(11), 11421-11424.

Yi, W., He, Z., Fei, J., and He, X. (2019). Sensitive electrochemical sensor based on poly (L-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC advances, 9(30), 17325-17334.

Yousuf, S., A. Donald, A.N., Hassan, A.M.M., Iqbal, A., Bodlah, M.A., Sharf, B., Noshia, N., and Asif, M. (2022). A review on particulate matter and heavy metal emissions; impacts on the environment, detection techniques and control strategies. MOJ Ecology & Environmental Sciences, 7(1), 1-5.

Zhang, Y., Liu, M., Pan, S., Yu, L., Zhang, S., and Liu, R. (2022). A magnetically induced self-assembled and label-free electrochemical aptasensor based on magnetic Fe3O4/Fe2O3@ Au nanoparticles for VEGF165 protein detection. Applied Surface Science, 580, 152362.

Zhao, G., Wang, H., Liu, G., Wang, Z., and Cheng, J. (2017). Simultaneous determination of trace Cd (II) and Pb (II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics, 23, 767-777.

Zhao, Q., Xu, X., Xu, Y., Gongsun, K., Hu, L., Yan, S., Yao, W., and Yan, Z. (2020). Synergistically improved electrochemical performance and its practical application of graphene oxide stabilized nano Ag2S by one-pot homogeneous precipitation. Applied Surface Science, 501, 144208.

Zhu, H., Xu, Y., Liu, A., Kong, N., Shan, F., Yang, W., Barrow, C.J., and Liu, J. (2015). Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors and Actuators B: Chemical, 206, 592-600.

Zhu, L., Xu, L., Huang, B., Jia, N., Tan, L., and Yao, S. (2014). Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochimica Acta, 115, 471-477.

Zuo, Y., Xu, J., Zhu. X., Duan. X., Lu, L., and Yu, Y. (2019). Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: A review. Microchimica Acta, 186, 1-17.


Full Text: PDF

Article Metrics

Abstract View : 653 times
PDF Download : 306 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bumi Publikasi Nusantara

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.