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This systematic literature review explores the recent 
advancements, applications, and challenges in the field of 
deep learning. By analyzing a diverse array of primary 
studies, this review elucidates how deep learning 
technologies have evolved from simple neural network 
architectures to complex frameworks capable of 
transforming various scientific and industrial sectors. Key 
advancements discussed include significant theoretical 
developments aimed at enhancing model stability and 
predictability, the evolution of methodologies to ensure 
adversarial robustness, and the expansive application of 
deep learning across different domains such as facial 
recognition, autonomous navigation, and healthcare. The 
review also addresses critical challenges faced by the field, 
including the heavy reliance on large, annotated datasets, 
the substantial computational demands of advanced models, 
and the ethical concerns arising from the broader integration 
of these technologies. The findings suggest that future 
research should focus on developing more efficient 
unsupervised and semi-supervised learning techniques, 
enhancing computational algorithms, and fostering 
interdisciplinary collaborations to address ethical and 
practical challenges. This review highlights both the 
remarkable capabilities and the significant limitations of 
deep learning, providing insights into its future trajectory in 
the academic and practical realms. 
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1. INTRODUCTION 
 

Deep learning has emerged as a transformative force in artificial intelligence (AI), driving 
advancements across diverse fields such as computer vision, natural language processing, 
healthcare, and autonomous systems. At its core, deep learning relies on multi-layered neural 
networks to model complex patterns, enabling machines to perform tasks with 
unprecedented accuracy. Because of its ability to process vast amounts of data, deep learning 
has become an essential tool in modern AI applications (Aggarwal et al., 2022). However, as 
the field evolves, it faces key challenges, including computational demands, adversarial 
robustness, ethical concerns, and theoretical limitations (Javed et al., 2025). 

One of the primary concerns in deep learning is its reliance on large, well-annotated 
datasets, which limits its accessibility in domains with scarce data, such as medical imaging 
and forensic analysis. Techniques such as data augmentation, transfer learning, and self-
supervised learning have been developed to mitigate this limitation (Shujaat, 2025). 
Additionally, adversarial vulnerabilities remain a significant challenge, as deep learning 
models can be easily manipulated by carefully crafted perturbations, raising concerns about 
their security in critical applications (Jved et al., 2025). Research efforts have introduced 
adversarial training and defensive distillation techniques to improve the robustness of these 
models. 

Theoretical advancements in deep learning have also gained traction, with researchers 
exploring the mathematical underpinnings of neural network optimization and training 
dynamics. The evolution of neural tangent kernels (NTK) and the integration of physics-
informed AI provide deeper insights into model behavior, offering potential improvements in 
stability and interpretability (Di et al., 2023). Moreover, the development of 
neuroevolutionary strategies, such as Evolvable Neural Units (ENU), signifies a shift toward 
adaptive, self-learning AI models, further expanding deep learning’s capabilities (Zhang & Mo, 
2021). 

Applications of deep learning continue to expand, influencing fields as diverse as facial 
recognition, autonomous navigation, and biomedical imaging. In facial recognition, deep 
learning models leverage convolutional neural networks (CNNs) and generative adversarial 
networks (GANs) to improve accuracy and reliability, but they also introduce privacy concerns 
and ethical considerations (Fuad et al., 2021). In autonomous navigation, reinforcement 
learning and deep Q-networks (DQNs) enable self-learning systems to optimize decision-
making in dynamic environments, though explainable AI (XAI) remains crucial for ensuring 
transparency (Li et al., 2024). 

The application of deep learning in medical imaging presents both opportunities and 
challenges. While AI-driven diagnostics enhance disease detection and patient care, the high-
dimensional nature of medical data makes models prone to overfitting and requires extensive 
computational resources (Chen et al., 2022). Solutions such as hybrid learning models, 
federated learning, and multi-modal AI approaches aim to address these challenges, making 
deep learning more effective and adaptable in healthcare (Wang et al., 2022). 

Furthermore, deep learning’s role in criminal network analysis has gained prominence, 
offering insights into complex relational structures and behavioral predictions. Graph neural 
networks (GNNs) and attention-based models have demonstrated potential in detecting illicit 
activities and preventing cybercrime, but challenges related to data privacy and ethical AI 
deployment must be addressed (Ribeiro et al., 2023). 

This study provides a comprehensive systematic literature review (SLR) to analyze recent 
advancements, key challenges, and future directions in deep learning. By investigating its 



61 | ASEAN Journal of Educational Research and Technology, Volume 4 Issue 1, March 2025 Hal 59-80 

DOI:  

p- ISSN: 2828-4887 e- ISSN: 2828-4860  

theoretical foundations, practical applications, and ongoing research efforts, this study aims 
to highlight the technological innovations and critical hurdles shaping the field. The novelty 
of this research lies in its holistic examination of deep learning across multiple domains, 
emphasizing the convergence of theoretical insights and real-world applications. The findings 
will contribute to the ongoing discourse on improving model efficiency, interpretability, and 
security, ultimately guiding the next generation of deep learning technologies. 

To structure this analysis, the study addresses the following research questions: (i) How 
have recent advancements in neural networks contributed to the development of deep 
learning? (ii) What are the key differences between neural networks and deep learning, and 
how have they evolved over time? (iii) What are some of the current research areas and 
challenges in the field of deep learning, and how are they being addressed? These questions 
provide a foundation for exploring the evolution, impact, and future trajectory of deep 
learning, ensuring a focused and rigorous examination of its role in AI innovation. 

 
2. METHODS 
 

This study conducted a systematic literature review (SLR) to examine the advancement 
from neural networks to deep learning, following a structured methodology to ensure a 
comprehensive and methodical examination of existing research. The SLR approach is widely 
recognized as an effective method for reviewing literature within specialized fields 
(Kitchenham et al., 2009; Van Dinter et al., 2021; Pati & Lorusso, 2018). The systematic review 
process followed in this study is illustrated in Figure 1, which outlines the eight distinct phases 
of literature selection and analysis. 

 

Figure 1. Systematic literature review (SLR) process for selecting research on the 
advancement from neural networks to deep learning. 

To identify relevant studies, electronic database searches were performed using four 
widely recognized sources: Emerald Insight, IEEE, Google Scholar, and ResearchGate. The key 
search term "Advancement from Neural Networks to Deep Learning" was used across all 
databases. The inclusion criteria were limited to peer-reviewed journal articles published 
between 2018 and June 2023 to ensure a focus on recent developments in this field. 

The sample selection followed a five-step filtering process: 
(i) Initial Search – The first screening retrieved studies based on the key search term. 
(ii) Period Filtering – Articles published before 2018 were excluded to maintain relevance to 

current advancements. 
(iii) Field-Specific Search – Advanced search options were utilized to refine results based on 

subject relevance. 
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(iv) Abstract, Title, and Full-Text Screening – Articles were filtered based on whether the key 
term appeared in the abstract, title, or full text. 

(v) Accessibility and Relevance Check – Only studies that were accessible to the researchers 
were considered. Articles that did not align with the research scope were excluded in this 
final step. 

The filtering process resulted in a final selection of 32 peer-reviewed journal articles. Table 
1 provides a summary of the number of articles selected at each step from each database. 
The filtering process resulted in a final selection of 32 peer-reviewed journal articles. Table 1 
provides a summary of the number of articles selected at each step from each database. 

To enhance the transparency and reliability of the systematic review, the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model was adopted. 
The PRISMA framework ensures a rigorous and methodical selection of studies, adhering to 
established best practices in systematic review and meta-analysis. Figure 2 presents the 
PRISMA Flow Diagram, which visually maps out the selection and screening process, 
demonstrating the step-by-step approach taken to filter and refine relevant studies. This 
methodological roadmap ensures clarity, transparency, and reproducibility in the literature 
selection process. 

 

Figure 2. PRISMA flow diagram illustrating the selection and screening process for the 
systematic review. 
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Table 1. Sample selection process for systematic review. 

Electronic Database 

Number of articles 

Final 
Sample 

Step 01 (Initial 
Search) 

Step 02 
(Filtered by 

Time 
Period) 

Step 03 
(Field-

Specific 
Search) 

Step 04 
(Abstract & 

Full-Text 
Screening) 

Emerald Insight 12 8 5 3 3 
IEEE 20 17 15 12 12 
Google Scholar  25 22 13 10 10 
Research Gate 21 18 12 9 9 
Total 78 65 45 32 32 

3. RESULTS AND DISCUSSION 
3.1. Search Results 

The search process, following the Systematic Literature Review (SLR) methodology and 
PRISMA framework, resulted in the selection of 32 peer-reviewed articles on advancements 
from neural networks to deep learning. The selected studies covered diverse topics, including 
deep learning architectures, theoretical advancements, adversarial robustness, and 
interdisciplinary applications. The structured methodology ensured a comprehensive 
representation of recent advancements because it filtered out irrelevant studies and focused 
only on high-quality, peer-reviewed research. The search and selection process are illustrated 
in Figures 2 and 3, while Table 1 summarizes the final sample selection. Figure 3 shows 
Systematic Literature Review (SLR) Process Flowchart. This diagram visually represents the 
step-by-step methodology followed in the systematic review, ensuring transparency, 
structure, and methodological rigor in the selection and analysis of literature. 

 

Figure 3. Systematic literature review (SLR) process flowchart. 
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3.2. RQ1: How have Recent Advancements in Neural Networks Contributed to the 
Development of Deep Learning? 

Deep learning has significantly advanced multiple domains because of its ability to improve 
feature extraction, prediction accuracy, and computational efficiency. Research has 
demonstrated that deep learning has played a key role in face recognition, where 
architectures such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), 
and Generative Adversarial Networks (GANs) have enhanced detection and verification 
processes. However, challenges such as illumination, expression variations, and occlusions 
continue to limit model generalization. Some studies suggest that unsupervised learning 
techniques and 3D face recognition models could further improve robustness (Fuad et al., 
2021). 

Theoretical advancements have also been a focus in deep learning research, particularly in 
addressing the lack of theoretical depth. Recent studies have classified deep learning research 
into six key theoretical areas, including stochastic differential equations, geometric loss 
landscapes, and over-parameterization in neural networks. Establishing deep learning 
methods within solid mathematical frameworks has been emphasized as a way to enhance 
stability and predictability, reducing reliance on experimental results (Choundhary et al., 
2022). 

Several findings are concluded in the following: 
(i) Adversarial Robustness and Security Concerns in Deep Learning. Security vulnerabilities 

in deep neural networks (DNNs) remain a critical concern because adversarial attacks can 
significantly impact model reliability. To address this issue, adversarial training has been 
proposed as a security-enhancing method, although it is computationally intensive. 
Research has categorized adversarial attacks and developed benchmark evaluation 
methods to assess model robustness. However, findings indicate that improving 
adversarial robustness may come at the cost of reduced accuracy on unaltered data, 
making security-performance trade-offs a key challenge in deep learning applications (Li 
et al., 2024). 

(ii) Architectural Improvements and Application Areas. Advancements in CNN architectures 
have played a crucial role in improving image recognition, speech processing, and natural 
language processing (NLP). Loss functions, such as divergence and margin loss, have been 
identified as essential in optimizing training efficiency because they minimize 
discrepancies between predicted and actual outputs. CNNs have demonstrated strong 
performance in image segmentation, restoration, and feature extraction, making them 
widely applicable across various fields (Archana & Jeevaraj, 2024). Deep learning has also 
expanded into healthcare, NLP, and industrial systems, where its adaptability enables 
improvements in computational efficiency and predictive accuracy. Innovations such as 
privacy-enhanced federated learning, predictive maintenance, and electricity demand 
forecasting highlight the diverse capabilities of deep learning models in real-world 
applications (Martín & Camacho, 2022). 

(iii) Deep Learning in Autonomous Systems and Network Analysis. The role of deep learning 
in autonomous navigation has gained significant attention because of its impact on 
mobile robotics, self-driving cars, unmanned aerial vehicles (UAVs), and space 
exploration. Researchers have explored methods for obstacle detection, scene 
perception, and path planning, emphasizing the need for real-time decision-making and 
high computational efficiency to handle dynamic environments (Aizat et al., 2023). Deep 
learning has also shown promise in the field of criminal network analysis, where graph 
convolutional networks have been used to analyze political corruption and financial crime 
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networks. Studies have demonstrated that GraphSAGE models outperform traditional 
machine learning techniques because they can efficiently process complex relational 
data, offering new opportunities for predictive crime analytics and law enforcement 
applications (Ribeiro et al., 2023). 

(iv) Deep Learning in Criminal Network Analysis. Deep learning models have demonstrated 
an ability to predict missing links in criminal networks, classify relationships as criminal 
or non-criminal, and estimate future criminal behaviors, including recidivism. The ability 
of these models to generalize to unseen nodes enhances their applicability because 
criminal networks constantly evolve. This generalization is enabled by GraphSAGE, which 
does not rely on the entire graph structure, allowing scalability and efficiency in 
processing large datasets. As shown in Figure 4, deep learning techniques improve the 
recovery of missing partnerships in criminal networks by capturing hidden patterns that 
traditional criminology techniques fail to detect. Furthermore, these models effectively 
encode node and edge properties, making predictions in both classification and 
regression tasks more accurate. The capability to forecast the amount of money 
exchanged in criminal transactions, formation of new criminal partnerships, and 
likelihood of re-offending provides valuable tools for law enforcement agencies, 
surpassing the efficiency of conventional analytical methods (Ribeiro et al., 2023). 

 

Figure 4. Recovering missing criminal partnerships with graph neural networks. 

(v) Deep Learning in Structural Damage Identification. Deep learning has been integrated 
into civil engineering and structural damage detection, where supervised learning 
enables models to recognize structural flaws in buildings and infrastructure. Image 
recognition techniques allow unmanned aerial vehicles (UAVs) to autonomously inspect 
hazardous environments, reducing human risk exposure. These advancements enhance 
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both accuracy and efficiency in assessing infrastructure conditions because deep learning 
models can process large-scale image datasets and detect subtle structural anomalies 
that traditional manual inspections might overlook (Pantoja et al., 2018). 

(vi) Evolution and Expansion of Deep Learning Applications. Deep learning has undergone 
significant transformations, evolving from basic neural networks to models incorporating 
multiple hidden layers and nonlinear transformations. These advancements have 
expanded deep learning applications in image processing, natural language processing 
(NLP), and biometrics. The ability to integrate supervised and unsupervised learning 
techniques has improved prediction accuracy and processing speed because hybrid 
models leverage large datasets while minimizing computational overhead. Deep learning 
continues to advance medical diagnostics, security systems, and real-time decision-
making technologies, solidifying its role in artificial intelligence applications (Najjar, 
2023). 

(vii) Deep Learning in Medical Image Processing. The application of deep learning in medical 
imaging has transformed traditional diagnostic processes. These models have been 
utilized for classification, segmentation, detection, and image registration, enabling 
faster and more precise disease detection. However, challenges persist because deep 
learning models require extensive, well-annotated datasets, which remain scarce in 
medical research. To address this limitation, unsupervised and semi-supervised learning 
techniques have been developed to extract meaningful patterns from unlabeled data, 
improving model training. As illustrated in Figure 5, models such as VoxelMorph have 
significantly enhanced image registration tasks, offering promising advancements in 
personalized healthcare (Chen et al., 2022). 

 

Figure 5. VoxelMorph for image registration in medical imaging. 

(viii) Deep Learning in Protein Structure Prediction. The field of structural bioinformatics has 
seen a paradigm shift with the adoption of deep learning, particularly in protein structure 
prediction. Deep neural networks (DNNs) utilizing convolutional layers have significantly 
improved residue-residue contact prediction in proteins. These models outperform 
traditional prediction techniques because they capture hierarchical data representations, 
which are crucial for understanding complex protein interactions. The success of DNNs in 
Critical Assessment of Protein Structure Prediction (CASP) competitions has 
demonstrated their effectiveness, with notable improvements in accuracy across 
successive CASP rounds. Despite their progress, current DNN-based approaches still face 
limitations because of overfitting to training data, restricting their predictive power on 
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unseen sequences. Future research must focus on enhancing model generalizability to 
expand deep learning applications beyond protein structure prediction into fields such as 
protein design and drug discovery (Kandathil et al., 2019). 

The reviewed literature underscores the rapid evolution of deep learning architectures, 
theoretical foundations, and application areas. While CNNs, GANs, and DBNs have 
significantly improved feature extraction and learning accuracy, challenges such as 
adversarial robustness, computational efficiency, and data privacy remain crucial. Findings 
suggest that deep learning models need continuous adaptation because technological 
advancements introduce both new opportunities and security risks. 

The reviewed literature highlights the transformational impact of deep learning across 
multiple disciplines, including law enforcement, engineering, medicine, and bioinformatics. 
While advancements in criminal network analysis, medical imaging, and structural diagnostics 
showcase deep learning’s practical benefits, several challenges remain. Data scarcity, 
computational costs, and adversarial robustness pose significant obstacles because deep 
learning models require extensive training and optimization. 

Deep learning is expected to continue shaping diverse fields, including healthcare, 
autonomous navigation, cybersecurity, and criminal analytics. Future research should focus 
on developing lightweight, explainable deep learning models because real-time decision-
making and ethical AI concerns are becoming increasingly important. The integration of 
unsupervised learning, federated learning, and quantum computing may provide 
breakthroughs, making deep learning systems more scalable, interpretable, and secure.  

Deep learning will continue to evolve as researchers explore hybrid learning models, 
unsupervised techniques, and federated learning to overcome current limitations. The 
findings indicate that future developments in deep learning will focus on improving model 
interpretability, security, and efficiency, making artificial intelligence more accessible and 
adaptable across industries 

3.3. RQ2: What are the Key Differences between Neural Networks and Deep Learning, and 
How have They Evolved Over Time? 

Neural networks serve as the foundational building blocks of deep learning because they 
provide the computational framework for multi-layered models capable of performing 
classification, prediction, and generative tasks. Over time, the complexity of these networks 
has increased significantly, incorporating architectures such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs). The evolution of deep learning has 
been driven by automated methods, such as CoDeepNEAT, which optimize network 
architectures through evolutionary algorithms. These automated approaches have achieved 
performance comparable to human-designed models in domains like object recognition and 
language processing, demonstrating the efficiency of automated deep learning design 
(Manakitsa et al., 2017). 

The CoDeepNEAT framework, as depicted in Figure 6, extends traditional neuroevolution 
techniques by optimizing not just the weights but also the topologies and hyperparameters 
of deep neural networks. The framework assembles networks through coevolutionary 
processes, combining modules and blueprints to form deep, structured architectures 
commonly seen in high-performing DNNs. By applying this approach to CIFAR-10 image 
classification and real-world image captioning, studies have shown that automatically 
generated DNN architectures can match or even surpass human-crafted networks, 
significantly reducing manual design efforts (Manakitsa et al., 2024). 
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Figure 6. Visualization of how CoDeepNEAT assembles networks for fitness evaluation. 

Several aspects are in the following: 
(i) Historical Progression of Deep Learning Architectures. The transformation of deep 

learning models can be traced back to early neural network theories, progressing through 
key technological milestones such as the perceptron, backpropagation techniques, and 
deep belief networks. These advancements have played a crucial role in enhancing model 
accuracy, training stability, and computational efficiency. CNNs, RNNs, and other deep 
architectures have enabled deep learning models to outperform traditional neural 
networks in applications such as image recognition and natural language processing. The 
historical perspective on neural networks provides insights into how incremental 
improvements in training techniques, computational power, and algorithmic efficiency 
have shaped modern deep learning (Alom et al., 2019). 

(ii) Training Dynamics and Theoretical Insights into Neural Networks. Research into neural 
network training dynamics has provided a deeper understanding of how deep neural 
networks transition from chaotic learning behaviors to stable performance optimization. 
Early training phases exhibit behavior similar to Neural Tangent Kernels (NTK), where 
deep networks behave as linearized models with gradual weight updates. However, as 
training progresses, these dynamics shift into nonlinear behavior, allowing DNNs to learn 
complex functions beyond what traditional linear models can capture. These insights 
have enhanced the predictability and interpretability of deep learning models because 
they provide a theoretical foundation for understanding how deep networks generalize 
data (Fort et al., 2020). The conceptual overview of deep learning phenomenology, 
illustrated in Figure 7, showcases the evolution of learning dynamics across different 
neural architectures, emphasizing the nonlinearity of deep learning optimization. 
Understanding these intricate learning behaviors is crucial for developing more robust 
and stable deep learning architectures (Fort et al., 2020). 

 

Figure 7. Conceptual overview of diverse deep learning phenomenology. 
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(iii) Comparison of Standard Deep Learning Training and NTK Models. The study contrasts the 
training behaviors of standard deep learning models with those predicted by Neural 
Tangent Kernel (NTK) models because deep neural networks (DNNs) exhibit highly 
nonlinear training dynamics that deviate significantly from their initialization points. 
While NTK-based models assume a linear expansion of weights, deep learning models 
undergo a rapid, chaotic evolution in the initial training phase. This phase is crucial 
because it dictates the trajectory of the model’s convergence towards lower-loss basins 
in the parameter space, ultimately influencing both performance and stability. The 
findings suggest that deep learning models explore more complex function regions than 
NTK counterparts because they dynamically adjust internal feature representations 
through iterative training. The early instability observed in training highlights the 
importance of adaptive learning schedules and robust optimization techniques in modern 
deep learning architectures. This nuanced understanding challenges conventional views, 
emphasizing that both linear and nonlinear training dynamics must be considered to fully 
grasp how deep learning models evolve over time (Ching et al., 2018). 

(iv) Biologically Inspired Neural Networks and Evolvable Neural Units (ENU). A novel 
biologically inspired model, termed the Evolvable Neural Unit (ENU), integrates 
neuroscience, machine learning, and evolutionary algorithms to mimic the behavior of 
biological neurons and synapses. Unlike traditional deep learning models, ENUs allow 
individual neurons and synapses to evolve, leading to emergent learning rules such as 
spike-timing-dependent plasticity. This adaptability enables agent-based learning, where 
networks develop their own learning mechanisms rather than relying on explicitly 
programmed rules. As depicted in Figure 8, the ENU framework introduces a new 
paradigm for artificial intelligence, allowing neural networks to evolve in a manner that 
resembles biological intelligence. By leveraging evolutionary strategies, these networks 
effectively discover spiking dynamics and reinforcement learning mechanisms, making 
them suitable for complex decision-making tasks. The study demonstrates the potential 
for evolved networks to autonomously navigate environments like a T-maze, suggesting 
a shift toward dynamic, self-adapting AI systems (Dasgupta et al., 2013). 

 

Figure 8. Architecture of deep neural networks. 
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(v) Training Dynamics and Evolution of Deep Learning Architectures. Deep learning models 
have undergone significant evolution because of the need to process increasingly large 
datasets and extract complex hierarchical features. Unlike early shallow neural networks, 
which consisted of a few layers and required manual feature extraction, modern DNNs 
utilize deep architectures like CNNs and RNNs that automatically learn representations 
from data. This transition was driven by advances in hardware, optimization techniques, 
and training methodologies, allowing deep networks to outperform traditional 
approaches in fields such as computer vision, natural language processing, and medical 
diagnostics. The role of NTK in training analysis further underscores how deep learning 
models move away from simple linear approximations towards highly dynamic, non-
linear transformations, which are essential for achieving superior predictive capabilities 
(Lee, 2023). 

(vi) Deep Learning in Pharmaceutical Applications (QSAR Models). Deep learning models 
have also redefined Quantitative Structure-Activity Relationship (QSAR) modeling in the 
pharmaceutical industry because they overcome the limitations of traditional neural 
networks. Early QSAR models in the 1990s suffered from overfitting, slow convergence, 
and inefficiencies in processing large datasets, leading to their replacement by support 
vector machines (SVMs) and random forests (RFs) in the early 2000s. However, with the 
resurgence of deep learning, modern QSAR models leverage deep neural networks 
(DNNs) to process vast chemical datasets and identify hidden patterns in molecular 
structures. The transition from shallow networks to DNN-based QSAR models has 
improved drug discovery efforts because deep learning networks can learn complex 
molecular representations without requiring hand-engineered features. This shift 
underscores the increasing reliance on automated feature learning and scalable 
architectures in pharmaceutical applications, demonstrating the broader impact of deep 
learning advancements in diverse scientific domains (Rane et al., 2024). 

(viii) Neural Tangent Kernel (NTK) and Evolution of Deep Learning Architectures. The study 
explores the evolution of deep learning architectures through the concept of Neural 
Tangent Kernel (NTK) because NTK provides a theoretical framework for understanding 
how modern deep networks refine their internal structures over time. Traditional neural 
networks relied on fewer layers with simpler connections, limiting their ability to capture 
hierarchical patterns in data. In contrast, deep learning employs multiple nonlinear 
layers, enabling the hierarchical extraction of increasingly abstract features, making tasks 
such as image and speech recognition more effective. Over time, the expansion of 
computational resources and deeper theoretical insights facilitated the transition from 
shallow models to highly optimized architectures that balance efficiency and accuracy. 
This shift underscores how deep learning frameworks maintain static architectures yet 
refine internal parameters to optimize performance, a fundamental distinction from 
earlier, dynamically altering models (Latendresse et al., 2024). 

(ix) From Early Artificial Neural Networks (ANNs) to Deep Neural Networks (DNNs). The 
historical progression from Artificial Neural Networks (ANNs) to DNNs has been shaped 
by the need for improved feature learning and scalability because early models such as 
the perceptron, developed in the 1950s, struggled with complex pattern recognition due 
to shallow architectures and limited computational power. These early networks 
suffered from challenges like the curse of dimensionality, making them ineffective for 
handling large-scale datasets. With the advent of deep learning, these limitations were 
addressed through multi-layered architectures, backpropagation, and scalable 
optimization techniques. Unlike simple ANNs, DNNs now effectively leverage large 
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datasets to learn hierarchical representations, excelling in tasks such as image 
classification, speech processing, and natural language understanding. The evolution of 
learning algorithms from Hebbian learning to backpropagation played a crucial role in 
this transformation, enabling deep networks to train efficiently and generalize better to 
unseen data (Wang et al., 2022). 

(x) The Expansion of Deep Learning into Large-Scale AI Applications. Deep learning has 
significantly expanded into large-scale artificial intelligence applications because its 
multi-layered networks allow machines to extract meaningful features from complex, 
high-dimensional datasets autonomously. Unlike traditional shallow networks, which 
required manual feature extraction, modern deep learning systems can automatically 
learn representations from raw data, making them ideal for computer vision, speech 
recognition, and autonomous systems. As computational power has increased and 
algorithms have improved, deep learning has shifted from manually programmed models 
to self-learning architectures capable of understanding nuanced data patterns with 
minimal supervision. This shift has enabled more efficient handling of large-scale data, 
driving advancements in fields such as biomedical imaging, cybersecurity, and real-time 
decision-making systems. The integration of deep learning into these domains illustrates 
its ability to generalize across tasks, a defining characteristic that sets it apart from 
traditional neural networks (Mishra & Gupta, 2016). 

(xi) Deep Learning in Computer Vision and Pattern Recognition. The study examines how 
deep learning has redefined computer vision and pattern recognition tasks because its 
ability to learn hierarchical feature representations has improved object recognition, 
scene understanding, and anomaly detection. Unlike early neural networks, which 
struggled with variations in scale, orientation, and noise, modern deep learning models 
employ advanced architectures such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) to efficiently process spatial and temporal data. As 
depicted in Figure 9, deep learning architectures can differentiate between objects in 
complex environments more accurately than traditional methods because they learn 
multi-level representations, reducing dependence on handcrafted features. This 
capability has led to breakthroughs in facial recognition, medical imaging, and 
autonomous navigation, where precise classification and detection are critical (Wang et 
al., 2022). 

 

Figure 9. Two objects that can be recognized differently by deep learning architecture. 

(xii) Deep Learning Innovations and Transition from Traditional Neural Networks. Deep 
learning has driven significant innovations across multiple domains because it 
outperforms traditional machine learning in adaptability and efficiency. Unlike earlier 
models that relied on manually designed feature extraction, deep learning employs 
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automated feature learning, enabling systems to adapt dynamically to complex 
environments. This shift has been pivotal in developing intelligent applications that 
require continuous learning, such as autonomous navigation, medical diagnostics, and 
financial forecasting (Mishra & Gupta, 2016). 

(xiii) Mathematical Foundations of Deep Learning and Non-Linear Transformations. The 
transition from traditional neural networks to modern deep learning systems has been 
fundamentally driven by mathematical advancements in non-linear transformations 
because earlier models, which were predominantly linear, struggled with complex 
pattern recognition tasks. Traditional neural networks were inspired by biological neuron 
models, designed for rapid information processing but limited in their ability to capture 
intricate relationships within data. Early networks were constrained to basic classification 
and regression tasks because they lacked the ability to generalize beyond linear 
boundaries. The incorporation of activation functions such as ReLU and Sigmoid allowed 
for deeper architectures that could extract hierarchical representations from data, 
leading to vast improvements in predictive accuracy (Rane et al., 2024). 

(xiv) Evolution from Shallow to Deep Learning Architectures. The evolution of deep learning 
has been characterized by the transition from shallow neural networks to deep 
architectures, because deeper models build increasingly abstract representations at each 
layer. Unlike traditional neural networks, which relied on a few layers for direct feature 
mapping, deep learning employs multiple hidden layers to progressively refine the data 
representation, allowing for higher accuracy in complex pattern recognition tasks. 
Modern deep networks have revolutionized fields such as image recognition, speech 
processing, and autonomous systems because they leverage multi-layered architectures 
that enhance hierarchical learning. Unlike conventional neural networks, which required 
extensive manual tuning, deep learning systems automatically learn and optimize 
hierarchical features, reducing human intervention in model design and improving 
generalization across diverse datasets (Rane et al., 2024). 

(xv) Optimization and Function Approximation in Deep Learning. The ability of deep learning 
models to approximate complex functions is a key factor in their success because deep 
architectures optimize multi-dimensional representations more effectively than shallow 
networks. This mathematical insight explains why deep networks outperform traditional 
models, as they capture non-linear dependencies that shallow models fail to represent 
accurately. Deep learning enhances model performance because it optimizes weights 
across multiple layers, improving the network’s ability to extract essential patterns from 
data. Unlike shallow networks, which often get stuck in local minima, deep learning 
models use advanced optimization techniques like stochastic gradient descent and 
backpropagation to reach more optimal solutions, reducing errors and improving 
accuracy (Rane et al., 2024). 

The review confirms that deep learning has evolved through both architectural 
advancements and theoretical refinements, leading to more scalable, interpretable, and high-
performing models. While automated design techniques like CoDeepNEAT have reduced 
human effort in optimizing neural network architectures, research into training dynamics and 
loss landscapes has provided a stronger mathematical foundation for deep learning. 

Despite these advancements, challenges remain because deep learning models require 
large computational resources and are prone to adversarial vulnerabilities. Future research 
should focus on enhancing model efficiency, improving interpretability, and incorporating 
hybrid learning approaches that blend supervised, unsupervised, and reinforcement learning. 
As deep learning continues to evolve, the integration of neuroevolutionary techniques, 
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physics-informed AI, and federated learning is expected to further refine model design and 
application across various industries. 

The evolution of deep learning has been marked by advancements in network 
architectures, biologically inspired learning, and domain-specific optimizations. The key 
takeaways from this analysis include: 
(i) The divergence between standard deep learning and NTK-based models, emphasizing the 

role of nonlinear training dynamics in DNN optimization. 
(ii) The introduction of Evolvable Neural Units (ENU), which shift AI development toward 

adaptive, self-learning models. 
(iii) The historical transformation of QSAR modeling, demonstrating how deep learning has 

redefined drug discovery and pharmaceutical research. 
The evolution of deep learning from simple neural networks to complex, multi-layered 

architectures has transformed artificial intelligence and machine learning because of 
advances in: 
(i) Neural network depth and feature learning, enabling superior pattern recognition and 

decision-making. 
(ii) Optimization techniques, such as backpropagation and dropout, which enhance training 

efficiency and generalization. 
(iii) Hardware advancements, facilitating the scalability of deep learning models for industrial 

applications. 
The mathematical underpinnings of deep learning provide a foundation for future 

advancements because understanding non-linearity, optimization, and hierarchical learning 
will drive the next generation of AI systems. Future research should explore hybrid models 
that integrate deep learning with evolutionary algorithms, improving adaptability and 
efficiency in real-world applications. This evolution underscores the transformative role of 
deep learning, setting the stage for more intelligent and autonomous AI systems capable of 
solving complex, real-world challenges. 

Future research should focus on improving interpretability, efficiency, and adaptability in 
deep learning, particularly by integrating hybrid learning models, evolutionary AI techniques, 
and biologically inspired architectures to enhance model generalization and scalability. Also, 
future research should explore hybrid AI models that combine deep learning, evolutionary 
strategies, and biologically inspired networks, creating more adaptive and efficient AI systems 
capable of self-learning and optimization. 

3.4. RQ3: What are Some of the Current Research Areas and Challenges in the Field of Deep 
Learning, and How are They being Addressed? 

Deep learning research continues to evolve, addressing key challenges and expanding its 
applications across various domains. One of the primary concerns in this field is data scarcity, 
which significantly impacts model training because deep learning models require extensive 
datasets for robust performance. To mitigate this, researchers are employing techniques such 
as transfer learning, synthetic data generation, and semi-supervised learning. These methods 
enable models to generalize better even when data availability is limited. 

Another crucial research area focuses on optimizing deep learning models for energy-
efficient computing because traditional deep networks require substantial computational 
power. Researchers are exploring techniques like split computing and early exiting strategies 
to reduce the computational burden on mobile devices while maintaining high accuracy. 
These approaches improve the trade-off between inference speed and energy consumption, 
making deep learning more viable for real-time applications (Cheng et al., 2024). 



Herath.,. Evolution and Advancements from Neural Network to Deep Learning| 74 

DOI:  

p- ISSN: 2828-4887 e- ISSN: 2828-4860 

In neuroimaging, deep learning has shown potential in enhancing outcome prediction, data 
interpretation, and segmentation. However, challenges such as multidimensionality, 
overfitting, and high computational costs persist because neuroimaging data is often complex 
and requires extensive preprocessing. Solutions include adopting multimodal learning 
strategies and implementing advanced visualization techniques to improve model 
interpretability (Xu et al., 2023). 

Deep learning is also transforming evidence-based decision-making across various sectors 
because of its ability to extract complex patterns from large datasets. However, ensuring 
model transparency and reliability remains a challenge, as deep networks are often 
considered "black boxes." Researchers are developing interpretable deep learning models, 
incorporating attention mechanisms and self-explainable architectures to enhance trust in 
decision-making systems. 

Biomedical imaging is another field where deep learning plays a crucial role because of its 
ability to enhance disease diagnosis and health profiling using large-scale imaging data. 
However, data imbalance and model generalization issues pose challenges because medical 
datasets often lack diverse representations. Researchers are addressing these issues by 
employing data augmentation techniques, ensemble learning, and domain adaptation (Wang 
et al., 2022). 

Hybrid deep learning models are emerging as a solution to many existing limitations 
because they combine conventional architectures with novel approaches such as capsule 
networks, which improve spatial hierarchy representation. Future research is expected to 
focus on refining lightweight, efficient models that integrate seamlessly with real-world 
applications while maintaining high accuracy and adaptability (Wang et al., 2022). 

Deep learning continues to expand across multiple disciplines, addressing key challenges 
while unlocking new opportunities. One of the prominent areas of development is biomedical 
imaging because deep learning models have shown remarkable improvements in 
segmentation accuracy, classification performance, and feature extraction. A multi-modal 
brain tumor segmentation framework using a hybrid attentional fusion scheme enhances 
segmentation results by effectively handling diverse input modalities. Similarly, a three-
dimensional convolution attention neural network (3DCANN) for EEG emotion recognition 
improves classification accuracy because of its ability to extract both spatial and temporal 
features (Chen et al., 2022). 

The field of artificial intelligence and machine learning has also seen advancements 
through Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), 
Natural Language Processing (NLP), and Reinforcement Learning (RL). These techniques 
contribute to solving complex real-world problems because they facilitate enhanced feature 
extraction, data generation, and autonomous decision-making. However, scalability remains 
a challenge because handling large datasets with high dimensionality requires optimized 
network architectures, efficient memory storage, and computational trade-offs (Yang, 2023). 
Innovations such as improving GAN output diversity, refining NLP-based contextual 
understanding, and optimizing RL strategies for real-time applications further push the 
capabilities of deep learning. 

Deep learning has made significant strides in biosciences, particularly in protein structure 
prediction, genome engineering, and systems biology, because of its ability to model intricate 
biological interactions. Despite this progress, challenges persist due to the requirement of 
extensive training data and computational resources. The adaptation of deep learning models 
to specific biological contexts remains a bottleneck because different biological systems 
present unique constraints in terms of data availability and generalization. Developing 
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efficient computational methods and improving multimodal data integration are essential 
steps toward enhancing the effectiveness of deep learning in biosciences (Sapoval et al., 
2022). 

In multiagent reinforcement learning (DMARL), deep learning facilitates more dynamic and 
adaptive AI systems because it enables agents to learn from interactions within multiagent 
environments. However, nonstationarity and increased computational complexity pose 
significant challenges because the strategies of individual agents evolve in real-time. 
Approaches such as centralized training with decentralized execution, opponent modeling, 
and enhanced coordination mechanisms have been explored to optimize agent behaviors. 
Additionally, incorporating insights from psychology and sociology into agent interactions 
enhances cooperative decision-making, making DMARL systems more robust and efficient 
(Wong et al., 2023). 

Blockchain technology has been integrated with deep learning to enhance security, data 
integrity, and model transparency because deep learning models are often vulnerable to 
adversarial attacks and data manipulation. Blockchain provides decentralized storage and 
immutable records, ensuring reliability in sectors such as healthcare, industrial automation, 
and cybersecurity. However, computational efficiency, data privacy, and network scalability 
remain key challenges because blockchain networks introduce additional overhead. 
Optimizing blockchain architectures to handle deep learning model requirements is an 
ongoing research focus, ensuring that the synergy between these two technologies can be 
fully leveraged for secure AI applications. 

Deep learning has demonstrated significant potential in various domains, including medical 
imaging, agriculture, and general artificial intelligence applications. In oncology, deep learning 
models have improved diagnostic accuracy, classification, and segmentation in bone tumor 
detection because they can analyze large and complex datasets with high precision. However, 
challenges such as data scarcity and computational intensity hinder widespread adoption. The 
integration of deep learning with emerging technologies can enhance model generalization, 
making it applicable across different clinical settings. This improvement could lead to more 
personalized treatment plans, enabling better patient outcomes because of deep learning’s 
predictive capabilities in informing clinical decision-making (Zhou et al., 2022). 

In broader artificial intelligence research, efforts are being made to address fundamental 
deep learning challenges, such as adversarial vulnerability, model interpretability, and 
environmental concerns associated with training large-scale models. Optimization 
techniques, including transfer learning and architectural enhancements, are being explored 
because they reduce reliance on extensive labeled datasets while maintaining performance. 
The development of more efficient network architectures and computational frameworks is 
essential to making deep learning more robust and scalable for diverse applications. 
Additionally, deep learning is being integrated with other artificial intelligence approaches to 
enhance interpretability and decision-making capabilities (Albahar, 2023). 

The application of deep learning in agriculture has also gained momentum because of its 
ability to improve efficiency in fruit counting, soil management, weed detection, and yield 
prediction. However, the deployment of deep learning in this sector faces challenges, 
including limited labeled datasets, high computational costs, and the scarcity of deep learning 
expertise. Research suggests that cost-effective techniques and the integration of deep 
learning with IoT and robotic systems can improve the accessibility of artificial intelligence in 
agricultural settings. These advancements are crucial because they will enable automated and 
intelligent farming solutions, reducing reliance on traditional labor-intensive practices 
(Albahar, 2023). 
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General deep learning research continues to tackle the issue of model compositionality, 
particularly in handling long-tailed distributions and hierarchical data structures. Current 
models struggle with generalization beyond training data, making them vulnerable to 
adversarial attacks. Addressing this challenge requires novel architectures that incorporate 
domain knowledge and cognitive processing techniques. Deep learning models that integrate 
structured reasoning can improve robustness and interpretability because they allow models 
to constrain their learning process more effectively. By incorporating domain-specific rules, 
deep learning frameworks can achieve greater reliability in real-world applications (Wang et 
al., 2022). 

3.5. Discussion 

The systematic literature review highlights significant advancements in deep learning, 
while also identifying persistent challenges across various applications. The evolution of 
theoretical frameworks has aimed to enhance model predictability and stability because deep 
learning has been criticized for its heavy reliance on empirical evidence. Recent efforts focus 
on addressing these concerns by incorporating more robust theoretical foundations into 
model design, ensuring more reliable and interpretable outcomes (Aggarwal et al., 2022). 

A critical challenge in deep learning is adversarial robustness, as models are susceptible to 
adversarial attacks that can compromise their reliability. To mitigate this, adversarial training 
methods have been developed, improving model resilience by enhancing their ability to 
distinguish between genuine and manipulated data. However, these methods require 
extensive computational resources, which limits their feasibility in resource-constrained 
environments. Additionally, as deep learning applications expand into security-sensitive 
domains such as facial recognition and autonomous navigation, ensuring robustness against 
adversarial interference remains a priority (Javeed et al., 2025). 

Deep learning's applications extend to healthcare, autonomous navigation, and biometric 
recognition, each requiring domain-specific adaptations. In healthcare, deep learning is used 
for medical imaging analysis and disease diagnosis, but progress is hindered because of data 
dependency and scarcity. The lack of large, well-annotated datasets affects model 
generalization, particularly in specialized medical fields where data collection is expensive and 
time-consuming. To address this, researchers are exploring data augmentation techniques, 
federated learning, and synthetic data generation to reduce reliance on manually labeled 
datasets (Shujaat et al., 2025). 

The computational demands of deep learning present another challenge because training 
deep models requires high-performance hardware, making it inaccessible in low-resource 
settings. Optimizing computational efficiency through model compression techniques and 
energy-efficient training algorithms is an ongoing research priority. Additionally, ethical and 
security concerns are growing as deep learning integrates into critical sectors. Issues such as 
biased algorithms, data privacy risks, and potential misuse necessitate stronger regulatory 
frameworks and explainable AI approaches to ensure transparency and fairness in model 
decision-making. These concerns are central to the future of deep learning, shaping how it 
evolves to meet the demands of real-world applications (Shujaat et al., 2025). 

 
4. CONCLUSION 
 

Deep learning continues to redefine artificial intelligence by enabling breakthroughs in 
diverse applications, from healthcare and security to autonomous systems and natural 
language processing. Its evolution from simple neural networks to sophisticated deep 
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learning architectures has driven significant improvements in pattern recognition, decision-
making, and automation. However, this rapid advancement comes with challenges that 
require strategic solutions. One of the most pressing concerns is the dependency on large, 
well-annotated datasets, which remains a bottleneck in domains where data is scarce or 
expensive to obtain. Future research should prioritize techniques such as transfer learning, 
self-supervised learning, and data-efficient neural architectures to mitigate this limitation. 
Additionally, optimizing computational efficiency remains critical because deep learning 
models demand extensive processing power, limiting their accessibility in resource-
constrained environments. Innovations in hardware acceleration, quantum computing, and 
edge AI can address these constraints, making deep learning more scalable and sustainable. 
Model interpretability and security also present significant challenges because deep neural 
networks often function as "black boxes," making it difficult to understand their decision-
making processes. Enhancing model transparency through explainable AI (XAI) will be crucial 
for fostering trust in deep learning applications, particularly in high-stakes areas such as 
medical diagnostics and autonomous decision-making. Similarly, improving adversarial 
robustness is necessary to safeguard AI systems against manipulation and vulnerabilities. 
Ethical considerations must also be at the forefront of deep learning research and 
deployment. Addressing biases in AI models, ensuring fairness, and developing regulations 
for responsible AI use are essential steps toward mitigating unintended societal 
consequences. As deep learning technologies become more embedded in everyday life, 
interdisciplinary collaboration between AI researchers, policymakers, and industry leaders 
will be key to ensuring their ethical and equitable application. Ultimately, deep learning's 
future lies in balancing innovation with responsibility. By advancing efficiency, security, and 
interpretability while maintaining ethical integrity, deep learning can continue to drive 
technological progress and positively impact society. 
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