Advancing Machine Learning for Financial Fraud Detection: A Comprehensive Review of Algorithms, Challenges, and Future Directions

(1) University of Kelaniya

Abstract
Keywords
References
Aghware, F. O., Ojugo, A. A., Adigwe, W., Odiakaose, C. C., Ojei, E. O., Ashioba, N. C., and Geteloma, V. O. (2024). Enhancing the random forest model via synthetic minority oversampling technique for credit-card fraud detection. Journal of Computing Theories and Applications, 1(4), 407-420.
Ahmed, F., and Shamsuddin, R. (2021). A comparative study of credit card fraud detection using the combination of machine learning techniques with data imbalance solution. In 2021 2nd International Conference on Computing and Data Science, 2021, 112-118.
Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., and Ahmed, M. (2022). Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms. IEEE Access, 10, 39700-39715.
Al‐dahasi, E. M., Alsheikh, R. K., Khan, F. A., and Jeon, G. (2025). Optimizing fraud detection in financial transactions with machine learning and imbalance mitigation. Expert Systems, 42(2), e13682.
Al-Dahidi, S., Madhiarasan, M., Al-Ghussain, L., Abubaker, A. M., Ahmad, A. D., Alrbai, M., and Zio, E. (2024). Forecasting solar photovoltaic power production: A comprehensive review and innovative data-driven modeling framework. Energies, 17(16), 4145.
Al-Hashedi, K. G., and Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402.
Bello, O. A., Folorunso, A., Onwuchekwa, J., Ejiofor, O. E., Budale, F. Z., and Egwuonwu, M. N. (2023). Analysing the impact of advanced analytics on fraud detection: a machine learning perspective. European Journal of Computer Science and Information Technology, 11(6), 103-126.
Chaquet-Ulldemolins, J., Gimeno-Blanes, F. J., Moral-Rubio, S., Muñoz-Romero, S., and Rojo-Álvarez, J. L. (2022). On the black-box challenge for fraud detection using machine learning (ii): nonlinear analysis through interpretable autoencoders. Applied Sciences, 12(8), 3856.
Cheah, P. C. Y., Yang, Y., and Lee, B. G. (2023). Enhancing financial fraud detection through addressing class imbalance using hybrid SMOTE-GAN techniques. International Journal of Financial Studies, 11(3), 110.
Chen, W., Liu, C., Xing, F., Peng, G., and Yang, X. (2022). Establishment of a maturity model to assess the development of industrial AI in smart manufacturing. Journal of Enterprise Information Management, 35(3), 701-728.
Choi, D., and Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. Security and Communication Networks, 2018(1), 5483472.
Choi, D., and Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. Security and Communication Networks, 2018(1), 5483472.
Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B., and Tiezzi, F. (2023). A systematic literature review on IoT-aware business process modeling views, requirements and notations. Software and Systems Modeling, 22(3), 969-1004.
Da’u, A., and Salim, N. (2020). Recommendation system based on deep learning methods: a systematic review and new directions. Artificial Intelligence Review, 53(4), 2709-2748.
Dehkordi, S. B., Nasri, S., and Dami, S. (2025). Unveiling anomalies: transformative insights from transformer-based autoencoder models. International Journal of Computers and Applications, 47(1), 29-44.
Dube, L., and Verster, T. (2023). Enhancing classification performance in imbalanced datasets: A comparative analysis of machine learning models. Data Science in Finance and Economics, 3(4), 354-379.
Ejiofor, O. E. (2023). A comprehensive framework for strengthening USA financial cybersecurity: integrating machine learning and AI in fraud detection systems. European Journal of Computer Science and Information Technology, 11(6), 62-83.
El-Hassani, F. Z., Amri, M., Joudar, N. E., and Haddouch, K. (2024). A new optimization model for MLP hyperparameter tuning: modeling and resolution by real-coded genetic algorithm. Neural Processing Letters, 56(2), 105.
El-Toukhy, A. T., Mahmoud, M. M., Bondok, A. H., Fouda, M. M., and Alsabaan, M. (2023). Countering evasion attacks for smart grid reinforcement learning-based detectors. IEEE Access, 11, 97373-97390.
Farabi, S. F., Prabha, M., Alam, M., Hossan, M. Z., Arif, M., Islam, M. R., and Biswas, M. Z. A. (2024). Enhancing credit card fraud detection: A comprehensive study of machine learning algorithms and performance evaluation. Journal of Business and Management Studies, 6(3), 252-259.
Ghosh Dastidar, K., Jurgovsky, J., Siblini, W., and Granitzer, M. (2022). NAG: neural feature aggregation framework for credit card fraud detection. Knowledge and Information Systems, 64(3), 831-858.
He, Y. (2022). Machine learning methods for credit card fraud detection. Highlights in Science, Engineering and Technology, 23, 106-110.
Hilal, W., Gadsden, S. A., and Yawney, J. (2022). Financial fraud: A review of anomaly detection techniques and recent advances. Expert Systems with Applications, 193, 116429.
Hossain, M. N., Hassan, M. M., and Monir, R. J. (2022). Analyzing the classification accuracy of deep learning and machine learning for credit card fraud detection. Asian Journal for Convergence in Technology (AJCT), 8(3), 31-36.
Ilori, O., Nwosu, N. T., and Naiho, H. N. N. (2024). Advanced data analytics in internal audits: A conceptual framework for comprehensive risk assessment and fraud detection. Finance & Accounting Research Journal, 6(6), 931-952.
Jan, C. L. (2021). Detection of financial statement fraud using deep learning for sustainable development of capital markets under information asymmetry. Sustainability, 13(17), 9879.
Kenyon, W., and Tilton, P. D. (2012). Potential red flags and fraud detection techniques. A Guide to Forensic Accounting Investigation, 231-269.
Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., and Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577-2595.
Kumar, S., Ahmed, R., Bharany, S., Shuaib, M., Ahmad, T., Tag Eldin, E., and Shafiq, M. (2022). Exploitation of machine learning algorithms for detecting financial crimes based on customers’ behavior. Sustainability, 14(21), 13875.
Maniraj, S. P., Saini, A., Ahmed, S., and Sarkar, S. (2019). Credit card fraud detection using machine learning and data science. International Journal of Engineering Research, 8(9), 110-115.
Mienye, I. D., and Sun, Y. (2023). A machine learning method with hybrid feature selection for improved credit card fraud detection. Applied Sciences, 13(12), 7254.
Mohsen, O. R., Nassreddine, G., and Massoud, M. (2023). Credit card fraud detector based on machine learning techniques. Journal of Computer Science and Technology Studies, 5(2), 16-30.
Mosa, D. T., Sorour, S. E., Abohany, A. A., and Maghraby, F. A. (2024). CCFD: Efficient credit card fraud detection using meta-heuristic techniques and machine learning algorithms. Mathematics, 12(14), 2250.
Nayyer, N., Javaid, N., Akbar, M., Aldegheishem, A., Alrajeh, N., AND Jamil, M. (2023). A new framework for fraud detection in bitcoin transactions through ensemble stacking model in smart cities. IEEE Access, 11, 90916-90938.
Nicholls, J., Kuppa, A., and Le-Khac, N. A. (2021). Financial cybercrime: A comprehensive survey of deep learning approaches to tackle the evolving financial crime landscape. IEEE Access, 9, 163965-163986.
Njoku, D. O., Iwuchukwu, V. C., Jibiri, J. E., Ikwuazom, C. T., Ofoegbu, C. I., and Nwokoma, F. O. (2024). Machine learning approach for fraud detection system in financial institution: A web base application. Machine Learning, 20(4), 01-12.
Odeyemi, O., Mhlongo, N. Z., Nwankwo, E. E., and Soyombo, O. T. (2024). Reviewing the role of AI in fraud detection and prevention in financial services. International Journal of Science and Research Archive, 11(1), 2101-2110.
Ogundokun, R. O., Misra, S., Maskeliunas, R., and Damasevicius, R. (2022). A review on federated learning and machine learning approaches: categorization, application areas, and blockchain technology. Information, 13(5), 263.
Pan, E. (2024). Machine learning in financial transaction fraud detection and prevention. Transactions on Economics, Business and Management Research, 5, 243-249.
Parvin, H., MirnabiBaboli, M., and Alinejad-Rokny, H. (2015). Proposing a classifier ensemble framework based on classifier selection and decision tree. Engineering Applications of Artificial Intelligence, 37, 34-42.
Patel, S. K., and Panday, D. (2024). Optimizing credit card fraud detection: A genetic algorithm approach with multiple feature selection methods. Advances in Distributed Computing and Artificial Intelligence Journal, 13, e31533-e31533.
Pitsane, M. Y., Mogale, H., and van Rensburg, J. J. (2022). Improving accuracy of credit card fraud detection using supervised machine learning models and dimension reduction. In International Conference on Intelligent and Innovative Computing Applications, 2022, 290-301.
Potla, R. T. (2023). AI in fraud detection: Leveraging real-time machine learning for financial security. Journal of Artificial Intelligence Research and Applications, 3(2), 534-549.
Qu, Z., Liu, H., Wang, Z., Xu, J., Zhang, P., and Zeng, H. (2021). A combined genetic optimization with AdaBoost ensemble model for anomaly detection in buildings electricity consumption. Energy and Buildings, 248, 111193.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., and Chica-Rivas, M. J. O. G. R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
Saranya, N., Devi, M. K., and Mythili, A. (2023). Data science and machine learning methods for detecting credit card fraud. The Scientific Temper, 14(03), 840-844.
Serenko, A. (2021). A structured literature review of scientometric research of the knowledge management discipline: a 2021 update. Journal of knowledge management, 25(8), 1889-1925.
Setiawan, R., Tjahjono, B., Firmansyah, G., AND Akbar, H. (2023). Fraud detection in credit card transactions using HDBSCAN, UMAP and SMOTE methods. International Journal of Science, Technology & Management, 4(5), 1333-1339.
Sharma, M. A., Raj, B. G., Ramamurthy, B., and Bhaskar, R. H. (2022). Credit card fraud detection using deep learning based on auto-encoder. In ITM Web of Conferences, 50, 01001.
Silva, P. R., Vinagre, J., and Gama, J. (2023). Towards federated learning: An overview of methods and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1486.
Strelcenia, E., and Prakoonwit, S. (2023). Improving classification performance in credit card fraud detection by using new data augmentation. AI, 4(1), 172-198.
Sulaiman, S. S., Nadher, I., and Hameed, S. M. (2024). Credit card fraud detection using improved deep learning models. Computers, Materials & Continua, 78(1), 1050-1069.
Yang, F., Liu, S., Dobriban, E., and Woodruff, D. P. (2021). How to reduce dimension with PCA and random projections?. IEEE Transactions on Information Theory, 67(12), 8154-8189.
Article Metrics
Abstract View

Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bumi Publikasi Nusantara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.